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CYCLOADDITION REACTION OF IMIDAZO[ 1,2—c]THIAIVZOLE TO ACETYLENIC
DIPOLAROPHILES AND NOVEL CONVERSION OF CYCLOADDUCTS INTO
4,9c-DIAZAPENTALENO[1,6a,6 : ab]NAPHTHALENES
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A nitrogen-bridged tetravalent sulfur compound, 1,3, 6-triphenylimidazo-
[1,2-clthia'Vzole, reacts with several acetylenic dipolarophiles giving excellent
yields of regio- and periselective [ 3 + 2] cycloadducts to the azomethine ylide
1, 3-dipole of the thia'Vzole. These cycloadducts undergo, in the presence of
triethylamine, a rare desulfurization and a subsequent 107 cyclization yielding
the derivatives of a new heterocyclic system, 4,9c-diazapentaleno[1,6a,6 :ab]-

naphthalene.

Two kinds of 1,3-dipolar forms, an azomethine ylide and a thiocarbonyl ylide, are masked along
the periphery of 1,3, 6-triphenylimidazo[ 1, 2-c]thia'V zole 1. A biperifunctional character of 1 has
been first demonstrated in the cycloaddition reaction to N-(p-tolyl)maleimide whose cycloadduct to the
azomethine ylide of 1 changes into that to the thiocarbonyl ylide through a retro 1, 3-dipolar cyclo-
addition reaction. R As a succeeding study, several examples for the cycloaddition reaction of 1 to
olefinic dipolarophiles have been investigated: The imidazo[ 1, 2-clthia'Vzole 1 undergoes a stereo-
specific cycloaddition reaction to symmetrically substituted olefins across the both ylides,z) and a
regio- and periselective cycloaddition reaction to unsymmetrically substituted olefins across the thio-
carbonyl ylide.?')

So far there are two similar systems known, a thia' zolo[ 3,4-b]indazoleu) and pyrrolo[ 1,2-c]-
thia'vzole,s) whose cycloaddition reaction affords the cycloadducts of different types depending upon
the nature of dipolarophiles used. Thus, an acetylenic dipolarophile (dimethyl acetylenedicarboxylate)
reacts across the azomethine imine (or ylide) 1,3-dipole, whereas an olefinic dipolarophile (N-phenyl-
maleimide) prefers the thiocarbonyl ylide.

In the present communication, we would like to show the cycloaddition reaction of 1,3, 6-triphenyl-
imidazo[ 1, 2-c]thia'” zole 1 to some acetylenic dipolarophiles giving the regio- and periselective [3 + 2]
cycloadducts to the azomethine ylide 1, 3-dipole of 1, and the novel conversion of the cycloadducts
through a desulfurization and 107 cyclization leading to a new heterocyclic system, 4, 9c-diazapentaleno-
[1,6a,6 : ablnaphthalene.

Cycloaddition Reaction of 1, 3, 6-Triphenylimidazo[ 1, 2-c]thia"Vzole 1 to Acetylenic Dipolarophiles 2.

The reaction of 1 with an equivalent amount of dimethy! acetylenedicarboxylate 2a in dry benzene,

at room temperature for 24 h in a nitrogen atmosphere, gave the red 1:1 adduct _3La_6) in 98 & yield
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(Scheme 1). The structure of 3a was assigned as 5, 6-bis(methoxycarbonyl)-2, 4, 6a-triphenyl-4a, 6a-
dihydro-1-thia-3, 6b-diazacyclopenta[ cd]pentalene, the cycloadduct to the azomethine ylide of 1, on
the basis of the spectral data shown in Table 1. The 1H-NMR spectrum shows a methine singlet at
5.72 ppm and the 1?'C-NMR spectrum exhibits a methine (73.33 ppm) and a quaternary carbon (86.67
ppm). A low stretching vibration of ester carbonyls (1720 cmul) indicates that the both ester groups
are conjugated, ruling out the 6, 6a-dihydro structure.

A similar reaction between 1 and dibenzoylacetylene 2b under reflux in benzene for 1 h afforded
the [3 + 2] cycloadduct 3b in 88 % yield (Table 1).

As mentioned above the thiocarbonyl ylide of 1 cycloadds to olefinic dipolarophiles in a highly
regioselective manner.3) However a regioselectivity of the azomethine ylide of 1 in the cycloaddition

reaction to unsymmetrical dipolarophiles is unknown.

Table 1. Cycloadducts of 1,3,6-Triphenylimidazo[ 1, 2-clthia'Vzole 1 to Acetylenic Dipolarophiles 2.

. 1
Yield mp vc=o _'H-NMR [ & ppm)®-P) 13c-NMR [ § ppm1®-©) m*
[8]1 [°C] [em=1] #a-H 5-R!  6-R2 2-C 2a-C 4-C  4a-C 6a-C [m/e]
3a 98 192-194 1720 5.72s 3.41s 3.75s 107.79s 170.66s 155.00s 73.33d 86.67s 494
Mc Mc
3b 88 179-181.5 1640 6.31s - - 108.26s 172.61s 156.57s 75.44d 89.29s 586
Bz Bz
3c 78 185-187 1720 5.42d 7.01d 3.62s  107.21s 171.13s 155.52s 72.68d 86.00s 436
H Mc
Jya-5=1.2 Hz
3d 87 199-200.5 1640 5.52d 6.53d - 108.03s 171.84s 155.81s 73.21d 87.83s 482
H Bz
Jua_5=2.0 Hz

a) Measured in CDCI3.
b) Mc: methoxycarbonyl; Bz: benzoyl
c) The carbonyl carbons are observed as follows: 3a: 162.28 and 165.03; 3b: 192.63 and 194.27;

3c: 162.80; 3d: 192.21 ppm.
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The reactions of 1 with methyl propiolate 2c (under reflux in benzene for 2 h) and benzoylacety-
lene 2d (at room temperature for 24 h) gave the similar [ 3 + 2] cycloadducts 3c (78 %) and 3d (87 %)
as the single products, respectively. The regiochemistry was determined as shown in Scheme 1 on the
basis of the vicinal couplings between the 4a-H and 5-H (Table 1). These small coupling constants
are consistent with the values estimated from a dihedral angle of the two hydrogens.n A high regio-
selectivity of the azomethine ylide of 1 was again observed in the carefully controlled reaction of 1

8)

with acrylonitrile.

Conversion of Cycloadducts 3 into 4, 9c-Diazapentaleno[ 1, 6a, 6 : ab]naphthalenes 5.

Unlike the cycloadducts of olefinic dipolarophiles to the azomethine ylide of 1, all the cycloadducts
3 obtained above did not isomerize into the thiocarbonyl ylide cycloadducts but decomposed giving a
complex mixture of products when heated in toluene or xylene. A clean reaction occurred, however,
to give two products 4 and/or 5 depending upon the reaction conditions when 3 was treated with an
equivalent amount of triethylamine in benzene (Scheme 2 and Table 2). The products 4 and 5 corres-
pond to compounds derived from 3 with an elimination of elemental sulfur and of hydrogen sulfide,
respectively. It is clear that the compound 5 has been formed via U4 through a dehydrogenation be-
cause i) the relative yields of 4 and 5 depend upon the reaction conditions and ii) the compound 4 is
quantitatively convertible into 5 (Table 2). The structures of 4 and 5 were assigned as the 3(H)-
methylenepyrrolo[ 1,2-alimidazole and 4, 9c-diazapentalenol 1, 6a, 6 : ab]naphthalene, respectively, on

the ground of the spectral data.gl
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The formation of 4 and 5 is explained by a sequence of reactions shown in Scheme 2. A 1,5-
hydrogen shift, induced by triethylamine, of the 4a-H of 3 to the 2-position forms A. A rare elimina-
tion of elemental sulfur leads to the isolable intermediate 4 that, in some cases, is not stable enough
to be purified by recrystallization. A phenyl group at the 5-position of 4 participates in a 107
cyclization forming B. A dehydrogenation of B gives a new azacycl[ 3.2.2]azine system, 4,9c-diaza-
pentalenol 1, 6a, 6 : ab]naphthalene 5.
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Table 2. Conversion of Cycloadducts 3 into 3(H)-Methylenepyrrolo[ 1,2-a]imidazoles 4
and 4,9c-Diazapentaleno[ 1, 6a,6 : ablnaphthalenes 5.

Products [ %]

3 Conditions®) 4 5

3a room temp. 24 h 25 58 Ba > 5a (92 %) reflux 24 hb)
reflux 24 h - 90

3b reflux 24 h - 86

3c reflux 24 h 8y - 4c + 5¢c (100 %) reflux 72 hb)
reflux 48 h 36 49
reflux 72 h - 81

3d room temp. 24 h 67 13 4d + 5d (92 %) reflux 24 hP)
reflux 24 h - 78

a) In benzene with triethylamine. b) In benzene without triethylamine.
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All the compounds described in this communication gave satisfactory elemental analyses.
An inspection of the Dreiding molecular model shows that the dihedral angle is about 70°.
The reaction of 1 with three equivalents of acrylomtrlle in benzene at 70 °C

for 4 h gave the azomethine ylide cycloadduct 6 in 20 $ yield together with Ph
the thiocarbonyl ylide cycloadduct (35 $) and the recovered 1 (18 %). P I’S
6: orange crysts., mp 140.5-142 °C. 1H-NMR (CDCl3) § 2. 03 (1H, ddd, H N Ph
J=13.0, 4.0, and 3.5 Hz, one of the 5-CH2), 2.34 (1H, ddd, J=13.0, 9.0, o -
and 8.0 Hz, the other of the 5-CH2), 2.34 (1H, dd, J=8.0 and 3.5 Hz, 6-H), 5 6CN

and 4.86 ppm (1H, dd, J=9.0 and 4.0 Hz, 4a-H).

The physical properties and spectral data of 4 and 5 are given as follows:

bJa: yellow crysts , mp 151,5-153.5 °C (decomp.). IR (KBr) 1740 and 1700 cm-1 (CO); TH-NMR
“(CDCI3) § 3.64, 3.80 (each 3H, s, COOMe), 6.07 (1H, s, =CHPh), and 7.00-8.02 ppm (15H, m,
ArH); 13C-NMR (CDCI3) & 51.67, 52.37 (each q, COOMe), 110.43 (s, 7-C), 114.89 (d, =CH-),
160.16 (s, 3-C), 163.85, and 165.56 ppm (each s, COOMe); MS m/e 462 (M*).

4c: vyellow crysts., mp 137-139 °C (decomp.). IR (KBr) 1710 cm-1 (CO); TH-NMR (CDCI3) §
T3.65 (3H s, COOMe), 5.99 (1H, s, =CHPh), 7.01 (1H, s, 7-H), and 7.08-8.40 ppm (15H, m,
ArH); 13C-NMR (CDCI3) § 51.02 (q, COOMe), 105.03 (d 7-C), 112.37 (d, =CH-), 158.75 (s,
3-C), and 164.45 ppm (s, COOMe); MS m/e 404 (M*).

4d: yellow crysts., mp 154-155.5 °C (decomp.). IR (KBr) 1640 cm~1 (CO); 'H-NMR (CDCI3) §
76.28 (1H, s, =CHPh), 6.91 (1H, s, 7-H), and 7.00-8.32 ppm (20H, m, ArH); 13C-NMR (CDCI3)
§ 106. iQ (d, 7-C), 112.74 (d, =CH-), 159.37 (s, 3-C), and 192.03 ppm (s, COPh); MS m/e
450 (M™).

5a: yellow needles (benzene-hexane), mp 251.5-253 °C. IR (KBr) 1715 cm-1 (CO); TH-NMR

T(CDCI3) & 4.00, 4.05 (each 3H, s, COOMe), 7.36-8.38 (13H, m, ArH), and 9.64 ppm (1H, br d,

9-H); 13C-NMR (CDCI3) § 52.48, 52.84 (each q, COOMe), 158.16 (s), 164.86, and 166.27 ppm
(each s, COOMe); UV (MeCN) Xmax (log €) 294 (4.27), 298 (4.27), 380 (4.20), and 428 nm
(3.71); MS m/fe 460 (M),

5b: yellow needles (benzene-hexane), mp 272-273 °C. IR (KBr) 1645 cm-1 (CO); TH-NMR
T(CDCI3) § 7.02-8.44 (23H, m, ArH) and 8.90 ppm (1H, br d, 9-H); MS m/e 452 (M%),

5c: yellow needles (benzene-hexane), mp 241-242 °C. IR (KBr) 1700 cm~ 1 (co); 'H-NMR
T(CDCIl3) 6§ 4.08 (3H, s, COOMe), 7.22 (1H, s, 2-H), 7.40-8.50 (13H, m, ArH), and 10.00 ppm
(1H, br d, 9-H); MS m/e 402 (M%),

5d: yellow needles (benzene-hexane), mp 290-291 °C. IR (KBr) 1630 em-1 (CO); TH-NMR
~(CcDCI3) § 7.21 (1H, s, 2-H), 7.36-8.20 (18H, m, ArH), and 9.74 ppm (1H, br d, 9-H); UV
(MeCN) Amax (log €) 245 (4.26), 320 (4.32), 383 (4.19), 412 (3.79), and 437 nm (3 73); MS
m/e 448 (M*).
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