CYCLOADDITION REACTION OF IMIDAZO[1,2-c]THIA IV ZOLE TO ACETYLENIC DIPOLAROPHILES AND NOVEL CONVERSION OF CYCLOADDUCTS INTO 4,9c-DIAZAPENTALENO[1,6a,6:ab]NAPHTHALENES

Otohiko TSUGE,* Shuji KANEMASA, and Takayoshi HAMAMOTO
Research Institute of Industrial Science, and Department of Molecular Science
and Technology, Interdisciplinary Graduate School of Engineering Sciences,
Kyushu University, Kasuga, Kasuga-shi, Fukuoka 816

A nitrogen-bridged tetravalent sulfur compound, 1,3,6-triphenylimidazo- [1,2-c]thia $^{\rm IV}$ zole, reacts with several acetylenic dipolarophiles giving excellent yields of regio- and periselective [3 + 2] cycloadducts to the azomethine ylide 1,3-dipole of the thia $^{\rm IV}$ zole. These cycloadducts undergo, in the presence of triethylamine, a rare desulfurization and a subsequent 10π cyclization yielding the derivatives of a new heterocyclic system, 4,9c-diazapentaleno[1,6a,6:ab]-naphthalene.

Two kinds of 1,3-dipolar forms, an azomethine ylide and a thiocarbonyl ylide, are masked along the periphery of 1,3,6-triphenylimidazo[1,2-c]thia^{IV}zole 1. A biperifunctional character of 1 has been first demonstrated in the cycloaddition reaction to N-(p-tolyl)maleimide whose cycloadduct to the azomethine ylide of 1 changes into that to the thiocarbonyl ylide through a retro 1,3-dipolar cycloaddition reaction. As a succeeding study, several examples for the cycloaddition reaction of 1 to olefinic dipolarophiles have been investigated: The imidazo[1,2-c]thia^{IV}zole 1 undergoes a stereospecific cycloaddition reaction to symmetrically substituted olefins across the both ylides, and a regio- and periselective cycloaddition reaction to unsymmetrically substituted olefins across the thiocarbonyl ylide. 3)

So far there are two similar systems known, a thia ^{IV}zolo[3,4-b]indazole ⁴⁾ and pyrrolo[1,2-c]-thia ^{IV}zole, ⁵⁾ whose cycloaddition reaction affords the cycloadducts of different types depending upon the nature of dipolarophiles used. Thus, an acetylenic dipolarophile (dimethyl acetylenedicarboxylate) reacts across the azomethine imine (or ylide) 1,3-dipole, whereas an olefinic dipolarophile (N-phenyl-maleimide) prefers the thiocarbonyl ylide.

In the present communication, we would like to show the cycloaddition reaction of 1,3,6-triphenylimidazo[1,2-c]thia vole 1 to some acetylenic dipolarophiles giving the regio- and periselective [3 + 2] cycloadducts to the azomethine ylide 1,3-dipole of 1, and the novel conversion of the cycloadducts through a desulfurization and 10π cyclization leading to a new heterocyclic system, 4,9c-diazapentaleno-[1,6a,6:ab]naphthalene.

Cycloaddition Reaction of 1, 3, 6-Triphenylimidazo[1, 2-c]thia^{1V}zole $\underline{1}$ to Acetylenic Dipolarophiles $\underline{2}$.

The reaction of $\underline{1}$ with an equivalent amount of dimethyl acetylenedicarboxylate $\underline{2a}$ in dry benzene, at room temperature for 24 h in a nitrogen atmosphere, gave the red 1:1 adduct $\underline{3a}^{6}$ in 98 % yield

Scheme 1

(Scheme 1). The structure of 3a was assigned as 5,6-bis(methoxycarbonyl)-2,4,6a-triphenyl-4a,6a-dihydro-1-thia-3,6b-diazacyclopenta[cd]pentalene, the cycloadduct to the azomethine ylide of 1a, on the basis of the spectral data shown in Table 1. The 1aH-NMR spectrum shows a methine singlet at 5.72 ppm and the 1aC-NMR spectrum exhibits a methine (73.33 ppm) and a quaternary carbon (86.67 ppm). A low stretching vibration of ester carbonyls (1720 cm $^{-1}$) indicates that the both ester groups are conjugated, ruling out the 6,6a-dihydro structure.

A similar reaction between $\underline{1}$ and dibenzoylacetylene $\underline{2b}$ under reflux in benzene for 1 h afforded the [3 + 2] cycloadduct 3b in 88 % yield (Table 1).

As mentioned above the thiocarbonyl ylide of $\underline{1}$ cycloadds to olefinic dipolarophiles in a highly regionelective manner. However a regionelectivity of the azomethine ylide of $\underline{1}$ in the cycloaddition reaction to unsymmetrical dipolarophiles is unknown.

Table 1. Cycloadducts of 1,3,6-Triphenylimidazo[1,2-c]thia^{IV}zole 1 to Acetylenic Dipolarophiles 2.

	Yield	mp	νc=0	1 H-NMR [δ ppm] a,b)			¹³ C-NMR [δ ppm] ^{a,c)}				м+	
	[%]	[℃]	[cm ⁻¹]	4a-H	5-R ¹	6-R ²	2-C	2a-C	4-C	4a-C	6a-C	[m/e]
<u>3a</u>	98	192-194	1720	5.72s	3.41s Mc	3.75s Mc	107.79s	170.66s	155.00s	73.33d	86.67s	494
<u>3b</u>	88	179-181.5	1640	6.31s	– Bz	- Bz	108.26s	172.61s	156.57s	75.44d	89.29s	586
<u>3c</u>	78	185-187	1720	5.42d J _{4a-5} =	7.01d H 1.2 Hz	3.62s Mc	107.21s	171.13s	155.52s	72.68d	86.00s	436
<u>3d</u>	87	199-200.5	1640	5.52d J _{4a-5} =	6.53d H	- Bz	108.03s	171.84s	155.81s	73.21d	87.83s	482

- a) Measured in CDCI3.
- b) Mc: methoxycarbonyl; Bz: benzoyl
- c) The carbonyl carbons are observed as follows: <u>3a</u>: 162.28 and 165.03; <u>3b</u>: 192.63 and 194.27; 3c: 162.80; 3d: 192.21 ppm.

The reactions of $\underline{1}$ with methyl propiolate $\underline{2c}$ (under reflux in benzene for 2 h) and benzoylacetylene $\underline{2d}$ (at room temperature for 24 h) gave the similar [3+2] cycloadducts $\underline{3c}$ (78 %) and $\underline{3d}$ (87 %) as the single products, respectively. The regiochemistry was determined as shown in Scheme 1 on the basis of the vicinal couplings between the 4a-H and 5-H (Table 1). These small coupling constants are consistent with the values estimated from a dihedral angle of the two hydrogens. A high regioselectivity of the azomethine ylide of $\underline{1}$ was again observed in the carefully controlled reaction of $\underline{1}$ with acrylonitrile. When $\underline{1}$ is a similar property of $\underline{1}$ was again observed in the carefully controlled reaction of $\underline{1}$ with acrylonitrile.

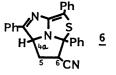
Conversion of Cycloadducts 3 into 4,9c-Diazapentaleno[1,6a,6:ab]naphthalenes 5.

Unlike the cycloadducts of olefinic dipolarophiles to the azomethine ylide of $\underline{1}$, all the cycloadducts $\underline{3}$ obtained above did not isomerize into the thiocarbonyl ylide cycloadducts but decomposed giving a complex mixture of products when heated in toluene or xylene. A clean reaction occurred, however, to give two products $\underline{4}$ and/or $\underline{5}$ depending upon the reaction conditions when $\underline{3}$ was treated with an equivalent amount of triethylamine in benzene (Scheme 2 and Table 2). The products $\underline{4}$ and $\underline{5}$ correspond to compounds derived from $\underline{3}$ with an elimination of elemental sulfur and of hydrogen sulfide, respectively. It is clear that the compound $\underline{5}$ has been formed via $\underline{4}$ through a dehydrogenation because i) the relative yields of $\underline{4}$ and $\underline{5}$ depend upon the reaction conditions and ii) the compound $\underline{4}$ is quantitatively convertible into $\underline{5}$ (Table 2). The structures of $\underline{4}$ and $\underline{5}$ were assigned as the 3(H)-methylenepyrrolo[1,2-a]imidazole and 4,9c-diazapentaleno[1,6a,6:ab]naphthalene, respectively, on the ground of the spectral data. 9)

Scheme 2

The formation of $\underline{4}$ and $\underline{5}$ is explained by a sequence of reactions shown in Scheme 2. A 1,5-hydrogen shift, induced by triethylamine, of the $\underline{4}a-H$ of $\underline{3}$ to the 2-position forms \underline{A} . A rare elimination of elemental sulfur leads to the isolable intermediate $\underline{4}$ that, in some cases, is not stable enough to be purified by recrystallization. A phenyl group at the 5-position of $\underline{4}$ participates in a 10π cyclization forming \underline{B} . A dehydrogenation of \underline{B} gives a new azacycl[3.2.2]azine system, 4,9c-diazapentaleno[1,6a,6:ab]naphthalene $\underline{5}$.

			Prod	ucts [%]	
3	Condition	<u>4</u>	<u>5</u>		
<u>3a</u>	room temp.	24 h	25	58	$\frac{4a}{}$ $\rightarrow \frac{5a}{}$ (92 %) reflux 24 h ^b)
	reflux	24 h	-	90	
<u>3b</u>	reflux	24 h	_	86	
<u>3c</u>	reflux	24 h	84	-	$\frac{4c}{}$ → $\frac{5c}{}$ (100 %) reflux 72 h ^b)
	reflux	48 h	36	49	
	reflux	72 h	_	81	
<u>3d</u>	room temp.	24 h	67	13	$\frac{4d}{}$ → $\frac{5d}{}$ (92 %) reflux 24 h ^b)
	reflux	24 h	-	78	


Table 2. Conversion of Cycloadducts 3 into 3(H)-Methylenepyrrolo[1,2-a]imidazoles 4 and 4,9c-Diazapentaleno[1,6a,6:ab]naphthalenes 5.

a) In benzene with triethylamine. b) In benzene without triethylamine.

References

- 1) O. Tsuge, S. Kanemasa, and T. Hamamoto, Chem. Lett., 1982, 1491.
- 2) O. Tsuge, S. Kanemasa, and T. Hamamoto, Chem. Lett., 1983, 85.
- 3) O. Tsuge, S. Kanemasa, and T. Hamamoto, Heterocycles, 20, No 4, to be published. 4) K. T. Potts and J. L. Marshall, J. Org. Chem., 41, 129 (1976).

- 5) J. M. Kane, J. Org. Chem., 45, 5396 (1980).
 6) All the compounds described in this communication gave satisfactory elemental analyses.
- An inspection of the Dreiding molecular model shows that the dihedral angle is about 70°.
- 8) The reaction of 1 with three equivalents of acrylonitrile in benzene at 70 °C for 4 h gave the azomethine ylide cycloadduct 6 in 20 % yield together with the thiocarbonyl ylide cycloadduct (35 %) and the recovered 1 (18 %). 6: orange crysts., mp 140.5-142 °C. 1 H-NMR (CDCl₃) δ 2.03 (1H, ddd, J=13.0, 4.0, and 3.5 Hz, one of the 5-CH₂), 2.34 (1H, ddd, J=13.0, 9.0, and 8.0 Hz, the other of the 5-CH₂), 2.34 (1H, dd, J=8.0 and 3.5 Hz, 6-H), and 4.86 ppm (1H, dd, J=9.0 and 4.0 Hz, 4a-H).

The physical properties and spectral data of 4 and 5 are given as follows: 4a: yellow crysts., mp 151.5-153.5 °C (decomp.). TR (KBr) 1740 and 1700 cm⁻¹ (CO); ¹H-NMR 4a: yellow crysts., mp 151.5-153.5 % (decomp.). IR (RBr) 1740 and 1700 cm $^{-1}$ (CO); $^{-1}$ H-NMR (CDCl3) δ 3.64, 3.80 (each 3H, s, COOMe), 6.07 (1H, s, =CHPh), and 7.00-8.02 ppm (15H, m, ArH); $^{-13}$ C-NMR (CDCl3) δ 51.67, 52.37 (each q, COOMe), 110.43 (s, 7-C), 114.89 (d, =CH-), 160.16 (s, 3-C), 163.85, and 165.56 ppm (each s, COOMe); MS m/e 462 (M+).

4c: yellow crysts., mp 137-139 % (decomp.). IR (KBr) 1710 cm⁻¹ (CO); $^{-1}$ H-NMR (CDCl3) δ 3.65 (3H, s, COOMe), 5.99 (1H, s, =CHPh), 7.01 (1H, s, 7-H), and 7.08-8.40 ppm (15H, m, ArH); $^{-13}$ C-NMR (CDCl3) δ 51.02 (q, COOMe), 105.03 (d, 7-C), 112.37 (d, =CH-), 158.75 (s, 3-C), and 164.45 ppm (s, COOMe); MS m/e 404 (M+).

4d: yellow crysts., mp 154-155.5 °C (decomp.). IR (KBr) 1640 cm⁻¹ (CO); ¹H-NMR (CDCl₃) δ 6.28 (1H, s, =CHPh), 6.91 (1H, s, 7-H), and 7.00-8.32 ppm (20H, m, ArH); 13 C-NMR (CDCl₃) δ 106.39 (d, 7-C), 112.74 (d, =CH-), 159.37 (s, 3-C), and 192.03 ppm (s, COPh); MS m/e

<u>5a</u>: yellow needles (benzene-hexane), mp 251.5-253 °C. IR (KBr) 1715 cm⁻¹ (CO); 1 H-NMR (CDCl₃) δ 4.00, 4.05 (each 3H, s, COOMe), 7.36-8.38 (13H, m, ArH), and 9.64 ppm (1H, br d, 9-H); 13 C-NMR (CDCl₃) δ 52.48, 52.84 (each q, COOMe), 158.16 (s), 164.86, and 166.27 ppm (each s, COOMe); UV (MeCN) λ max (log ϵ) 294 (4.27), 298 (4.27), 380 (4.20), and 428 nm (3.71); MS m/e 460 (M⁺).

<u>5b</u>: yellow needles (benzene-hexane), mp 272-273 °C. IR (KBr) 1645 cm⁻¹ (CO); 1 H-NMR (CDCl₃) δ 7.02-8.44 (23H, m, ArH) and 8.90 ppm (1H, br d, 9-H); MS m/e 452 (M⁺). 5c: yellow needles (benzene-hexane), mp 241-242 °C. IR (KBr) 1700 cm⁻¹ (CO); ¹H-NMR

(CDCl₃) δ 4.08 (3H, s, COOMe), 7.22 (1H, s, 2-H), 7.40-8.50 (13H, m, ArH), and 10.00 ppm (1H, br d, 9-H); MS m/e 402 (M⁺).

5d: yellow needles (benzene-hexane), mp 290-291 °C. IR (KBr) 1630 cm⁻¹ (CO); ¹H-NMR (CDCl₃) δ 7.21 (1H, s, 2-H), 7.36-8.20 (18H, m, ArH), and 9.74 ppm (1H, br d, 9-H); UV (MeCN) λ max (log ϵ) 245 (4.26), 320 (4.32), 383 (4.19), 412 (3.79), and 437 nm (3.73); MS m/e 448 (M^+) .